![]() ![]() |
科目一覧へ戻る | 2025/03/14 現在 |
科目名/Course title | データサイエンス演習/Data Science (Seminar) |
---|---|
担当教員(所属)/Instructor | 大塚 秀治 (全学基盤教育部門情報教育センター) |
授業科目区分/Category | 共通科目 |
授業形態/Type of class | 演習 |
開講期/Semester | 2025年度/Academic Year 後期/AUTUMN |
開講曜限/Class period | 金/FRI 2 |
対象所属/Eligible Faculty | 文学部国語国文学科/Faculty of Liberal Arts Department of Japanese Language and Literature,文学部フランス語フランス文学科/Faculty of Liberal Arts Department of French Language and Literature,文学部英語英文学科/Faculty of Liberal Arts Department of English Language and Literature,人間総合学部児童文化学科/Faculty of Human Studies Department of Children's Culture,人間総合学部発達心理学科/Faculty of Human Studies Department of Developmental Psychology,人間総合学部初等教育学科/Faculty of Human Studies Department of Child Care and Primary Education |
対象学年/Eligible grade | 2年 , 3年 , 4年 |
単位数/Credits | 2 |
副題 /SubTitle |
データサイエンスに必要な知識とスキルの習得(ビジネス統計スペシャリスト検定受験対策を含む) |
---|---|
授業のねらいと達成目標 /Course Objectives |
データサイエンスは統計学と情報工学が融合した分野で、大規模なデータから価値のある情報を抽出して分析・解釈するとともに将来を予測する学問領域です。この授業ではデータサイエンスの基本となる統計的知識とデータ分析スキルを、実践的ビジネスデータを用いて演習重ねることで習得することを目的とします。さらに、最終的に資格試験である「ビジネス統計スペシャリスト」検定の取得を目指します。 |
授業概要 /Course description |
授業は2024年度1年次必修科目「はじめてのデータサイエンス」(2024年度以前はオンデマンドによる選択科目)を深化・拡張したもので、同科目を履修したことを前提に進めます。全ての授業で実習が行われるため、コンピュータの操作やExcelの作表についての基礎知識が必要となります。「ビジネス統計スペシャリスト」検定に合格する内容を網羅するため、統計学の内容を含みます。 |
授業計画(授業の形式、スケジュール等) /Class schedule |
第1回 オリエンテーション データサイエンスとは、データサイエンスの目的 第2回 データ分析の基礎「はじめてのデータサイエンスの復習」 第3回 データ分析の基礎「はじめてのデータサイエンスの積み残し課題」 ソルバー機能による最適化・移動平均と季節調整 第4回 分析データを理解する(第1章) データの形・母集団と標本・記述統計と推測統計 第5回 1変量データのまとめ方(第2,3章) 第6回 2変量データのまとめ方(第4章) 第7回 仮説検定(1)カイ二乗検定(第5章) 帰無仮説・有意確率・有意水準 第8回 仮説検定(2)平均値の比較t検定・F検定(第6章) 平均値の差の検定方法・分散の差の検定 第9回 仮説検定(3)相関分析・回帰分析(第7章) 相関係数の有意性検定・回帰分析の解釈 第10回 仮説検定(4)質的変数を結果にした回帰分析(第8章) ダミー変数の使用と変換・再変換の方法 第11回 結果系変数を2つ以上に回帰分析(重回帰分析)(第9章) 重回帰分析の方法と結果の見方 有意水準と変数選択 多重共線性 第12回 回帰分析の応用とより高度な分析手法(第10章) 第13回 分散分析による分析と高度な分析手法 第14回 まとめと資格試験 ビジネス統計スペシャリストについて 第15回 期末試験 |
準備学習・履修上の注意 /Notices |
授業はコンピュータ教室でPCを使って行います。このため、履修希望者が多い場合には人数制限が行われる可能性があります。 原則として「はじめてのデータサイエンス」が履修済みであることを想定しています。3年生以上の場合「情報リテラシー」や「データ分析演習」を履修済であることが望ましいです。PCやExcelの利用についての基本的な理解があることが前提となります。 【授業外学修の内容】 毎回の授業の予習と振り返りを行うこと、指示された課題を行うことが重要です。なお、この授業は各回の予習復習時間を合計で4時間程度と想定して設計されています。 |
教科書・参考書等 /Textbooks |
【教科書】 『Excelで学ぶ 実戦ビジネスデータ分析』 著者: 豊田 裕貴 出版社: オデッセイ コミュニケーションズ ISBN: 978-4-908327-07-0 【参考書】 『Excelで学ぶ ビジネスデータ分析の基礎』 著者: 玄場 公規、湊 宣明、豊田 裕貴 出版社: オデッセイ コミュニケーションズ ISBN: 978-4-908327-04-9 |
成績評価の方法 /Evaluation |
【評価方法・評価基準】 配点の割合は以下の通り 授業への取り組み・課題提出 40% 小テスト・ドリルへの取り組み 30% 期末試験 30% 【注意事項】 課題・模試結果・出席が基準や規定数に達していない場合は期末試験の受験資格はありません。欠席すると課題の提出や受取ができないので著しく成績に影響するので注意が必要です。 【評価基準】 授業への取り組み・課題提出 授業内で解説される内容を適切に要約できるかどうか。また、練習問題に解答できているかどうか 小テスト・ドリルへの取り組み 授業で扱った内容を正しく理解できているかどうか 期末試験 決められた時間内に所定の処理を正しく行うことができるかどうか 【課題(試験やレポート)に対するフィードバックの方法】 基本的に提出物は次週返却します 適宜成績を manaba course により個別に通知します |
備考 /Notes |
演習中に指名して回答を求めたり、演習等で作成した内容を口頭発表するようなことはありません。授業では「manaba course」を毎回利用します。 |
科目と卒業/修了認定に関する方針(ディプロマ・ポリシー)の対応一覧
/Diploma Policy
https://www.shirayuri.ac.jp/campus/enrollment/diploma01.html